The Kaprekar Constant for 3-Digit numbers

The 3-digit **Kaprekar** number (constant) is an amazing number. It is also a very useful tool/exercise for younger students to review:

- a) the ordering of digits from largest to smallest (descending order),
- b) and vice versa (ascending order).
- c) and as additional classwork/homework practice in the operation of subtraction.

Here are the steps to find the 3-digit Kaprekar constant:

- 1. Pick any 3-digit number, except one that has all the same three digits (ex. 222)
- 2. Arrange the three digits in descending order (from largest to smallest)
- 3. Below that 'new' number, rearrange the digits in ascending order (from smallest to largest). Steps #2 and #3 give students practice with ordering digits.
- 4. Subtract the smaller number from the larger number.
- 5. Take the answer (the difference) and repeat steps #2, #3, and #4.
- 6. Repeat these steps until you cannot go any further. (You'll know!)
- 7. Once you have arrived at the Kaprekar constant, count how many steps it took.

Example:

Questions:

1)	How many step:	s did it take	to arrive at the Kaprekar constant?	
		_		

2) Can you find numbers that take:

a) 1 step	Number (s)
b) 2 steps	Number (s)
c) 3 steps	Number (s)
d) 4 steps	Number (s)
e) 5 steps	Number (s)
f) 6 steps	Number (s)
g) More the 6 stens?	Number: There are no numbers that take more than 6 story

g) More the 6 steps? Number: There are no numbers that take more than 6 steps!

[·] LIGO-SEC/ T. Huynh-Dinh 2015 (tien@ligo-la.caltech.edu)

Pathways to the Kaprekar constant (for Three Digits)

Note: Two-digit numbers do not have a **Kaprekar** constant. For any starting 2-digit number with differing digits, the pattern enters this loop (45, 9, 81, 63, 27, 45...).

What is the Kaprekar constant for 4-digit numbers?

[·] LIGO-SEC/ T. Huynh-Dinh 2015

Pathways to the Kaprekar constant (for Three Digits) (Answer Key)

[·] LIGO-SEC/ T. Huynh-Dinh 2015